If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+20y+46=0
a = 1; b = 20; c = +46;
Δ = b2-4ac
Δ = 202-4·1·46
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-6\sqrt{6}}{2*1}=\frac{-20-6\sqrt{6}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+6\sqrt{6}}{2*1}=\frac{-20+6\sqrt{6}}{2} $
| 4p+8+8p-10=38 | | 4p+8+8p-10=38 | | 0.07y+0.08(y+3000)=1440 | | 7k=4 | | -13k+10k-10k-4K-13k=8 | | (5x4)-(-3x-2)=x | | 5x+34=88 | | 14v-4v-10v+v+v=8 | | 0.07+0.08(y+3000)=1440 | | -7-6u=5u+29 | | 8x-11=9(5-x) | | 11w-3w=8 | | X2+11x+20=2x | | 3a/14+2a/7=2 | | 4×5y=3+2y | | 0=200+0.75y+25 | | (5x4)-(-3x-2)=14 | | 3x+3+3x+2+3x=3x+3x+4x+1 | | 1=200+0.75y+25 | | 7x-5=-3+5 | | 20z-18z=4 | | 2/3n-1/3=2n | | 45=-9(k+4) | | 5+4x-7=7x+2-3x | | 5a-4a=16 | | -5v=1-6v | | 2/5c+4-1/5c=19 | | 5h-4h=13 | | 2x+7=7x+7-5x | | 9+(x+1)=25 | | 3/5c=-13 | | (5x4)-(-3-2)=14 |